
Open Source Python GIS Hacks Page: 1
Raster Data Aggregation 6/16/2005

Creating Aggregate Rasters for MapServer or GDAL
MapServer tileindex and GDAL VRT

Tileindexes
Although the gdaltindex utility meets the needs of most users, creating a
tileindex shapefile is a good introduction to gdal.py. It can also be useful to have
a tileindex file with more attributes for reuse in your map.

os.path
The os.path module implements functions on pathnames. Create a new text file
in your working directory named hobu.txt. No contents are needed. We'll use
this file to explore os.path.

The abspath function returns the absolute path given a relative path.
>>> import os.path
>>> os.path.abspath('./hobu.txt')
'P:\\OSG05\\aggregation\\hobu.txt'
>>>

The basename function returns the filename with all directories stripped from
the path.
>>> os.path.basename('P:\OSG05\aggregation\hobu.txt')
'hobu.txt'
>>>

the getctime function returns the file creation time in seconds past the epoch
>>> os.path.getctime('hobu.txt')
1118386365
>>>

glob
Just like a shell glob. glob.glob returns a possibly empty list of paths that
match the input pattern:
>>> import glob
>>> glob.glob('*.txt')
['hobu.txt']

Howard Butler and Sean Gillies Open Source Geospatial '05
Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 2
Raster Data Aggregation 6/16/2005
>>>

Putting it together
Now we'll combine these to print information about a batch of files:
>>> for path in glob.glob('*.txt'):
... print os.path.basename(path), \
... os.path.abspath(path), \
... os.path.getctime(path)
...
hobu.txt P:\OSG05\aggregation\hobu.txt 1118386365
>>>

And now we'll try this on the workshop raster data. Replace the pattern below
with the path to the workshop data:
>>> paths = glob.glob('P:\OSG05\python-tests\data*.tif')
>>> for path in paths:
... print os.path.basename(path), \
... os.path.abspath(path), \
... os.path.getctime(path)
...
escalante30_zip.tif P:\OSG05\python-
tests\data\escalante30_zip.tif 1044213876
mtnwest_zip.tif P:\OSG05\python-tests\data\mtnwest_zip.tif
1044212332
waterpocket30_zip.tif P:\OSG05\python-
tests\data\waterpocket30_zip.tif 104421366
6
zion30_zip.tif P:\OSG05\python-tests\data\zion30_zip.tif
1044211340
cameron30_zip.tif P:\OSG05\python-
tests\data\cameron30_zip.tif 1044129070
wasatch30_zip.tif P:\OSG05\python-
tests\data\wasatch30_zip.tif 1044129100
>>>

Howard Butler and Sean Gillies Open Source Geospatial '05
Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 3
Raster Data Aggregation 6/16/2005

gdal
OK, so we can obtain all kinds of OS info about the raster data. Now we'll get to
the the important geo properties using GDAL's gdal Python module.

In the following steps, don't bother with typing the paths. Type the leading
quotation mark, drag the file from the file explorer to the interpreter, and the
close the quotes.

Let's open one of the workshop raster files in the default read-only mode:
>>> from gdal import gdal
>>> dataset = gdal.Open('P:\OSG05\python-
tests\data\cameron30_zip.tif')
>>> dataset
<gdal.gdal.Dataset instance at 0x008E48C8>
>>>

The gdal module is extensive. In this exercise we're going to limit ourselves to
the following attributes of a Dataset:
>>> dataset.RasterCount
3
>>> dataset.RasterXSize
999
>>> dataset.RasterYSize
1586
>>> dataset.GetGeoTransform()
(-106.05969999999999, 0.00027777777777799998, 0.0,
40.842500000000001, 0.0, -0.0
0027769230769199998)
>>>

These are the number of bands, the number of pixels and lines, and the geo
transform parameters. The elements at indexes 0 and 1 of this tuple are the upper
left x value and the x pixel size. The elements at indexes 3 and 5 are the upper left
y value and -1 times the y pixel size.

Let's use these properties and methods to compute the bounding boxes for our
raster data files:

Howard Butler and Sean Gillies Open Source Geospatial '05
Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 4
Raster Data Aggregation 6/16/2005
>>> paths = glob.glob('P:\OSG05\python-tests\data*.tif'):
>>> for path in paths:
... ds = gdal.Open(path)
... geo = ds.GetGeoTransform()
... pixels = ds.RasterXSize
... lines = ds.RasterYSize
... minx = geo[0]
... maxx = minx + pixels * geo[1]
... maxy = geo[3]
... miny = maxy + lines * geo[5]
... print os.path.basename(path), (minx, miny, maxx,
maxy)
...
escalante30_zip.tif (-111.705, 37.686388888056207,
-111.22944443999971, 38.06583
3333055551)
mtnwest_zip.tif (-115.5, 36.50000000000022,
-103.50000000000048, 42.0)
waterpocket30_zip.tif (-111.28472222194445,
37.298055554999578, -110.72666665999
982, 38.340000000000003)
zion30_zip.tif (-113.21111111, 37.106111111111382,
-112.74444443999984, 37.63166
6666111109)
cameron30_zip.tif (-106.05969999999999,
40.402080000000488, -105.78219999999978,
 40.842500000000001)
wasatch30_zip.tif (-111.85889999999999, 40.38999999999951,
-111.40639999999964,
40.77028)
>>>

There's no close method for a GDAL dataset. The dataset is closed at the end of
the interior block above when Python's garbage collection sweeps out the local
ds object. You might want to be explicit about it, appending
... del ds

to the end of the block.

Howard Butler and Sean Gillies Open Source Geospatial '05
Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 5
Raster Data Aggregation 6/16/2005

ogr
That's all we need from gdal.py in order to create our raster tileindex. Now
we'll need to learn to create an output vector dataset and push features into it.
Here, in a nutshell, is creation and saving of a polygon type shapefile using
GDAL's ogr.py module:
>>> from gdal import ogr
>>> driver = ogr.GetDriverByName('ESRI Shapefile')
>>> tileindex_shp = driver.CreateDataSource
('tileindex.shp')
>>> tileindex = tileindex_shp.CreateLayer('tileindex',
geom_type=ogr.wkbPolygon)
>>> tileindex_shp.Destroy()
>>>

The Destroy method is more bark than bite. It doesn't delete the file on disk, just
closes the output stream and releases allocated memory. Look in your working
directory and you will find a shapefile – a rather pointless shapefile with no
records, no fields.

Shapefile fields
Let's address that now. Delete the three shapefile components, and repeat the
following lines. Try using your interpreter's command history.
>>> tileindex_shp = driver.CreateDataSource
('tileindex.shp')
>>> tileindex = tileindex_shp.CreateLayer('tileindex',
geom_type=ogr.wkbPolygon)

Next we'll define a string type field named 'location' and set its width to 200
characters:
>>> field = ogr.FieldDefn('location', ogr.OFTString)
>>> field.SetWidth(200)

and add this field to the layer
>>> tileindex.CreateField(field)
0

we'll leave the data source open.

Howard Butler and Sean Gillies Open Source Geospatial '05
Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 6
Raster Data Aggregation 6/16/2005

Adding Features
A record in our shapefile layer is represented by ogr's Feature class. The
constructor requires a FieldDefn argument, and we obtain one from the layer
itself. The value of our single 'location' field is set using the feature's SetField
method. Note the return of the abspath function and our hobu.txt file.
>>> feature = ogr.Feature(tileindex.GetLayerDefn())
>>> feature.SetField(0, os.path.abspath('hobu.txt'))

A complete feature needs a geometry. We won't dive too deep into ogr.Geometry
yet, but will use Python's string interpolation to hack a WKT (well-known text)
string and exploit ogr's WKT geometry factory. This time we are using a Python
mapping as the object of the interpolation operator instead of a tuple as we did
earlier:
>>> wkt = 'POLYGON ((%(minx)f %(miny)f, %(minx)f %(maxy)f,
%(maxx)f %(maxy)f, %(maxx)f %(miny)f, %(minx)f %(miny)f))'
>>> wkt = wkt % {'minx': -10, 'miny': -10, 'maxx': 10,
'maxy': 10}
>>> wkt
'POLYGON ((-10.000000 -10.000000, -10.000000 10.000000,
10.000000 10.000000, 10.000000 -10.000000, -10.000000
-10.000000))'

Next we create an ogr.Geometry from this string and set the feature's geometry
from it:
>>> geom = ogr.CreateGeometryFromWkt(wkt)
>>> feature.SetGeometryDirectly(geom)
0

create a new feature in our layer based upon this one, and close the data source.
>>> tileindex.CreateFeature(feature)
0
>>> tileindex_shp.Destroy()

Open the shapefile in OpenEV to see the results.

Aside for mapscript users
The mapscript.pointObj and mapscript.rectObj classes each have magic
methods to support Python's built in str() function. Give these a quick try:
>>> from mapscript import mapscript

Howard Butler and Sean Gillies Open Source Geospatial '05
Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 7
Raster Data Aggregation 6/16/2005
>>> p = mapscript.pointObj(1, 2)
>>> str(p)
"{ 'x': 1 , 'y': 2, 'z': 0 }"
>>> r = mapscript.rectObj(-10,-10,10,10)
>>> str(r)
"{ 'minx': -10 , 'miny': -10 , 'maxx': 10 , 'maxy': 10 }"
>>>

Hey, what do you know? Looks a lot like a Python dict, and with the help of the
built in eval() function, we can turn it into a dict and interpolate the values into
a WKT string:
>>> wkt = 'POLYGON ((%(minx)f %(miny)f, %(minx)f %(maxy)f,
%(maxx)f %(maxy)f, %(maxx)f %(miny)f, %(minx)f %(miny)f))'
>>> wkt = wkt % eval(str(r))
>>> wkt
'POLYGON ((-10.000000 -10.000000, -10.000000 10.000000,
10.000000 10.000000, 10.000000 -10.000000, -10.000000
-10.000000))'
>>>

Complete tileindex script
A complete tileindexing script is included in the workshop at
c:/ms4w/apps/python/aggregation/aggtindex.py and can be run using the
accompanying aggregation.bat file. Aim it at the workshop raster files in
c:/ms4w/apps/python/python/data and check the results again in OpenEV.

Virtual Datasets
GDAL's virtual dataset, or VRT, driver is a means of (among other things)
aggregating raster data. The document at http://www.gdal.org/gdal_vrttut.html
describes how to express a virtual dataset using XML. We're going to create a
VRT that aggregates the workshop raster files, allowing them to be visualized or
processed as if they were a single dataset.

XML and Elementtree
Python has a standard XML library, and a great range of other available libraries
for parsing and writing XML. The elementtree package

http://effbot.org/zone/element-index.htm

Howard Butler and Sean Gillies Open Source Geospatial '05
Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 8
Raster Data Aggregation 6/16/2005

is a good match for VRT's lightweight XML.

Here's a very simple example that's easy to type in the interpreter:
>>> from elementtree.ElementTree import Element,
SubElement
>>> html = Element('html')
>>> body = SubElement(html, 'body')
>>> heading = SubElement(body, 'h1')
>>> heading.text = 'Introducing ElementTree'
>>> para = SubElement(body, 'p')
>>> para.text = 'Package for manipulating hierarchical
data'

Now let's import the tostring function so that we can see how this is encoded:
>>> from elementtree.ElementTree import tostring
>>> tostring(html)
'<html><body><h1>Introducing ElementTree</h1><p>Package
for manipulating hierarchical data</p></body></html>'

On second thought, let's add some CSS to demonstrate element attributes:
>>> head = SubElement(html, 'head')
>>> style = SubElement(head, 'style')
>>> style.attrib['type'] = 'text/css'
>>> style.text = 'H1{color:red} P{color:blue}'
>>> from elementtree.ElementTree import tostring
>>> tostring(html)
'<html><body><h1>Introducing ElementTree</h1><p>Package
for manipulating hierarchical data</p></body><head><style
type="text/css">H1{color:red} P{color:blue}
</style></head></html>'

and then use the ElementTree class to write this to a file
>>> from elementtree.ElementTree import ElementTree
>>> tree = ElementTree(html)
>>> tree.write('example.html')

Open example.html in a web browser. Minus the standard preamble, it's
XHTML, and easy to generate using elementtree.

Howard Butler and Sean Gillies Open Source Geospatial '05
Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 9
Raster Data Aggregation 6/16/2005

Easy VRT
For a first example, we're going to quickly create a VRT that simply proxies a
single band of one of our workshop rasters much like in the first example on the
VRT tutorial page.
>>> from gdal import gdal
>>> ds = gdal.Open
(r'c:\ms4w\python\data\wasatch30_zip.tif')
>>> geo = ds.GetGeoTransform()
>>> pixels = ds.RasterXSize
>>> lines = ds.RasterYSize

You could print the values of these if you wanted. That's all we need from gdal,
and now we begin by creating our top level element:
>>> vrt_elem = Element('VRTDataset',
 rasterXSize=str(pixels),
 rasterYSize=str(lines))

Note that all Element attributes must be strings. Next we add a GeoTransform
SubElement and set its text node to a string representation of the raster
dataset's geotransform.
>>> geo_elem = SubElement(vrt_elem, 'GeoTransform')
>>> geo_elem.text = '%f, %f, %f, %f, %f, %f' % (geo)

Next we'll add a band element to the root
>>> band_elem = SubElement(vrt_elem, 'VRTRasterBand',
dataType='Byte', band='1')

and then take a preview of our VRT under construction
>>> tostring(vrt_elem)
'<VRTDataset rasterXSize="1629"
rasterYSize="1369"><GeoTransform>-111.858900, 0.000278,
0.000000, 40.770280, 0.000000,
-0.000278<GeoTransform><VRTRasterBand band="1"
dataType="Byte" /></VRTDataset>'

Only thing left to do is to define the source data for the band. This involves
several new levels of sub elements. Take care that they are subbed from the
proper parent element. If you mistakenly insert an element into another, you can
take advantage of the fact that all Elements are list-like and delete the sub
element at a certain index.
>>> source_elem = SubElement(band_elem, 'SimpleSource')

Howard Butler and Sean Gillies Open Source Geospatial '05
Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 10
Raster Data Aggregation 6/16/2005
>>> filename_elem = SubElement(source_elem,
'SourceFilename', relativeToVRT='0')
>>> filename_elem.text =
r'c:\ms4w\python\data\wasatch30_zip.tif'
>>> sband_elem = SubElement(source_elem, 'SourceBand')
>>> sband_elem.text = '1'
>>> srect_elem = SubElement(source_elem, 'SrcRect',
xOff='0', yOff='0', xSize=str(pixels), ySize=str(lines))
>>> drect_elem = SubElement(source_elem, 'DstRect',
xOff='0', yOff='0', xSize=str(pixels), ySize=str(lines))

Now let's wrap this up in an ElementTree and write it to disk.
>>> vrttree = ElementTree(vrt_elem)
>>> vrttree.write('first.vrt')

This first.vrt file can be opened in OpenEV. You should see a gray scale image of
the Wasatch Range centered roughly on the Alta ski area at the head of Little
Cottonwood Canyon.

Further VRT Element Hacking
A handy feature is that our elements are entirely mutable. Set the source band to
“2” and write to a new file
>>> sband_elem.text = '2'
>>> vrttree.write('second.vrt')

repeat for the third band
>>> sband_elem.text = '3'
>>> vrttree.write('third.vrt')

Raster hackers might find this a good way to tweak pixel scaling, color tables, or
even filter kernels. See http://www.gdal.org/gdal_vrttut.html for more VRT
options.

Complete VRT Script
Finally, we return to the objective: a VRT that aggregates source rasters of a
single class (same band count, same projection, and pixel resolution). It's not
much more involved than our previous example. The VRT raster size and extents
are expanded as each input raster is read, and the individual raster data is
mapped into the aggregate output by calculating the appropriate destination
rectangle.

Howard Butler and Sean Gillies Open Source Geospatial '05
Sean Gillies June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 11
Raster Data Aggregation 6/16/2005

The completed script is at c:/ms4w/apps/python/aggregation/aggvrt.py and can
be run using the accompanying aggregation.bat file. Aim it at the 5 workshop
raster files matching the pattern c:/ms4w/apps/python/python/data/*30*.tif ,
redirect the output to a .vrt file and check the results again in OpenEV. You
should see results like this

Howard Butler and Sean Gillies Open Source Geospatial '05
Sean Gillies June 16-18, 2005

Minneapolis, MN

